--- title: "Vignette >Basic usage<" author: "Clemens Schmid" date: "March 2017" output: rmarkdown::html_vignette bibliography: ../inst/REFERENCES.bib vignette: > %\VignetteIndexEntry{Vignette >Basic usage<} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- # Load libraries ```{r, message=FALSE} library(mortAAR) library(magrittr) ``` # Make test data available Data from four neolithic gallery graves in central Germany [@czarnetzki_menschlichen_1966]. ```{r} td <- gallery_graves ``` Inspect the data. Show the first ten rows of the data set: ```{r, echo=FALSE, results='asis'} td %>% head(., n = 10) %>% knitr::kable() ``` # Clean up data Replace: "?" with `NA` values. ```{r} td %>% replace(td == "?", NA) -> td ``` ```{r, echo=FALSE, results='asis'} td %>% head(., n = 10) %>% knitr::kable() ``` Translate "inf_I", "inf_I" and "juv" into numeric age ranges [@martin_lehrbuch_1928, pp. 580]. ```{r} td <- td %>% replace(td == "inf_I", "0-6") %>% replace(td == "inf_II", "7-13") %>% replace(td == "juv", "14-19") ``` ```{r, echo=FALSE, results='asis'} td %>% head(., n = 10) %>% knitr::kable() ``` Remove rows that do not have age information. ```{r} td <- td %>% dplyr::filter(!is.na(age)) ``` ```{r, echo=FALSE, results='asis'} td %>% head(., n = 10) %>% knitr::kable() ``` Make a decision on individual 139 from Niedertiefenbach with age less or equal 60. ```{r} td[td$indnr == "139" & td$site == "Niedertiefenbach", ]$age <- "50-60" ``` ```{r, echo=FALSE, results='asis'} td %>% head(n = 10) %>% knitr::kable() ``` Separate the age range column. ```{r} td <- td %>% tidyr::separate(age, c("from", "to")) ``` ```{r, echo=FALSE, results='asis'} td %>% head(., n = 10) %>% knitr::kable() ``` Adjust variable types. ```{r} td <- td %>% transform( from = as.numeric(from), to = as.numeric(to) ) ``` # Analysis preparation Control the flow of the analysis by exemplifying what the different variables of the input data stand for. ```{r} # tdlist <- td %>% # plyr::dlply("site", identity) td_prepared <- prep.life.table( td, dec = NA, agebeg = "from", ageend = "to", group = "site", method = "Standard", agerange = "included" ) ``` # Analysis ```{r} td_result <- td_prepared %>% life.table() ``` # Plot ```{r, fig.width=7, fig.height=5} td_result %>% plot(display = c("qx", "dx", "lx")) ``` ```{r, fig.width=7, fig.height=5} td_result %>% plot(display = c("ex", "rel_popx")) ``` # References